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Based on the three-dimensional linearized equations of stability, the deformation 
process of compressible elastoplastic ground is investigated in the case of small 
subcritical deformations. In the case of a homogeneous subcritical state, the 
general solutions of the equations of stability are constructed similarly to [i]. 

We shall consider a compressible elastoplastic ground, for which we shall determine the 
physical equations following [2]. We shall suppose that the condition of the limiting state 
of the material is represented in the form 

r X2, 23) = 0, (I) 

where o is the first invariant of the stress tensor; E2 and Z3 are the second and third invari- 
ants of the deviator of the stress tensor. Suppose that for this 

e,~ = e~3 + e~ (2) 

(eij are the components of the deformation tensors), and that the elastic deformations are 
related to the stresses by Hooke's law 

e _ 1 § ~ .  
e~j ------g-- ~ j - - - - ~ a k k 6 i j .  (3)  

We s h a l l  t a k e  t h e  e x p r e s s i o n s  w h i c h  d e f i n e  t h e  r e l a t i o n  b e t w e e n  t h e  t e n s o r  o f  t h e  r a t e s  
o f  t h e  p l a s t i c  d e f o r m a t i o n s  and  t h e  s t r e s s e s  i n  t h e  f o r m  [2]  

i+o. oo o~ ~ = ~  ~ 6 ~  § oz~o%j ~ 0z~ +~(~)~6~j. (4) 

H e r e  o = x/3  d g k k / d t ;  ~ ( c )  = d ~ / d o ;  e = x/3  e k k ;  ~ ( c )  --  e = 0 i s  a f u n c t i o n  o f  t h e  h u l k  
loading, which is determined completely from experiments by  omnidirectional uniform tension-- 
compression; % ~ 0 is an indeterminate factor. 

The total deformations are related to the displacements by the Cauchy formulas 

t (u~,j + uj,O. (5) e~ = ~ -  

The equations for equilibrium in the absence of body forces and the boundary conditions 
with specified forces at the surface of the body will be taken in the form [3] 

[~Jk (6i~ + ui,k)],j = O, [ojh(6i~ + ui,~)lnj = Pi ,  (6)  

where n i are u n i t  vectors of the normal to the surface of the body, Pi are the components 
of the w forces. 

Suppose that the solution of the system of equations (1)-(6) is 
0 a~j (xk, t), e.$ (x~, t), e ~  (xh, t), ul (xh, t ) , . . . ~  

S u b s e q u e n t l y ,  t h e  s t a b i l i t y  o f  t h i s  p r o c e s s  i n  r e l a t i o n  t o  s m a l l  p e r t u r b a t i o n s  w i l l  b e  i n -  
v e s t i g a t e d .  

We shall represent the quantities associated with the perturbed form of motion in the 
form 

Op +p = ~ .  + o e* e~ = e~ + e~ , . . . ,  

The components of the characteristics of the perturbed motion are not marked with any indices 
but the perturbations are marked with the superscript +. Then expansion of Eq. (I) with an 
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accuracy up to linear terms gives 

( ar o+ faery+ [ar v+ 
~ ] 0  + ~]0 ~ + t ~ ] 0  "~ : 0, 

where (7) 
a~" ~t~; x + -  9 d ~ ;  x + +o o = 2 - - -  ~ ~ : 3 S i j S ~ p S p i .  

From r e l a t i o n s  (2) and ( 3 ) ,  we have 

a- +p l @ v + v a~@iS. e d = e  +e+e{~ , e~ ~ = - ~ d q - - E -  (8) 

The associated law of flow (4) assumes the form 

e~ p ~- '~ , ~+~162 ~ , = o ~  ~- ._-7 -7 rl+5~, (9) 

where  

1 ;0~r + ~2 o~r so ., o~r o1~+] 2 [ _ _ ( ~ +  [ 0~r o ~ o~r o ]  '} o o* + . +t + toi o% 
{,oo [ o o.oo] }o o . o §  o o 

, ~ ~ $cpgpk, pz~ s p~ + 3 ~ s~s~ ,  + 3  o 2 . ~ o + ~ -  2 ~ S h / T 3 0 E  ~ 

! 0. o, t o~ o,~]u% 

OqbO OCDO 
6=L0~0 0 O'ln n 

+ 
For e44 we obtain 

2~+ = 8 / ~'~ "-3- ' ~  ' ~  -- + {hkSm,, ~-=~-; 
O(Y rn n 

/o.o,~j-,. b+ {o,.,,,~ bo~- 
' \o~ ]o 

(io) 

2eTj : u+~-+ u.~{. (il) 

The linearized equation of equilibrium and the boundary conditions have the form [3, 4] 

(o~ 0 + = ( ~  + 0 + 4- o'AutJ  ,./ -- pu+ O, oj~ruth ) nj = P+. (i2) 

The boundary problem (7)-(12), in a similar way to the method in [5], can be reduced to 
the investigation of a system of differential equations with constant coefficients and, thus, 
we shall carry out the investigation of the stability of system (7)-(12) according to the 
limiting system of equations. 

In this case, Eq. (9) assumes the form 

s+ p _-- %+ 0r @ ~+5i~, (13) 
V O0~j 

so that 

n + = t,(~,,),;  +, z, + 6{~ +p ~ e+p,  '~ er = t " "  -T ~ vm U ~-~ (14) 

The other relations of the system of equations (7)-(12) retain the previous form with the 
only difference being that quantities with index zero occurring in them are certain stationary 
quantities. It is obvious that the results obtained above can be extended to the case when 
the stress function is chosen in more general form [6]: 

q) ((Y, Y"2, E.,  e,, E~, E~, n~, Hi=, H21, k i) = O. 

For  d e t e r m i n a c y ,  we choose  the  c o n d i t i o n  o f  p l a s t i c i t y  

o _/--i- n0 ~/z r = s o + l /  -g-2J2 - - k = O ,  (15) 

which is characteristic for friable media. Equation (7) in this case is written in the form 
0 + 

2o: (t," -- oia ~ o'+ v-~ s{j.sO = O. (16) 

Equations (13), taking account of Eq. (14) for the condition of plasticity (15), assume 
the form 

0 )[0 ] 
+ p  Stun ( e + p  _ _  i + p  ~3 e<i --~--~-~-~\-mn -'g'-ekkSran 2(k_-h~o)--l- y 6 i i  ~-~(ao)~+6ii .  (17) 
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Eliminating from relation (8), 
after a series of transformations 

{+~,,~.+., + ( s  o t ) e + n + c [ a ( b _ 3 , ( ( r o ) ) S ~ _  _ _  E "u  = e ~ - -  a ~ + T 6 ~  o 

where 

(16), and (17) the quantities e~, ei~j, and o +, we can obtain 

a = 2c~ (k-- ao~ b=3(2v -- I)E-1; c = E[2a}(t + v) -- E(b --3~(Co))l-L 

(18) 

Let us consider the case of the principal stressed state in the form 

~9. o 

The linearized three-dimensional equations of motion (12) in this case can be represented in 
the form 

{lYij - -  [q(6jlUi. I 71- ~j2Ui,2) -~ p~isUi,a]},j -- pSg~Uf = 0, (19) 

and the boundary conditions in the  form 

(20) 

Here and in the future, in the components of vectors and tensors characterizing perturbations, 
the time factor exp st will be excluded, and for the amplitude quantities of the perturbations, 
the index + will be omitted. In the equations (19) and (20), it is assumed that the elasto- 
plastic body is compressed along the axis Ox3 by forces of intensity p and along the axis Oxt 
Oxa by forces of intensity q. 

The linearized relation (18) between the stresses and deformations for compressed elas- 
toplastic ground, for the case of the principal motion described above~ can be represented 
in the form 

au = ~ua~huk,h + (i -- 6U)GU(u~a + uj.), (2k), 
E 

a n = ~ E  6 j t+ (2a~as~  B s j - - A z ,  G t ] = ~ ,  (21) 

E o Yt fi@, B u = & [ a ( b _ 3 a p ( ~ r o ) ) s O i  i + v ~  ] A~j = i--4-~(as~ + - -  - T - " , q  

I t  i s  obv ious  t h a t  
E -----G. 

alI=-a 'z2 '  a l a = a 2 3 '  GiJ---- 2 ( l + v )  

C o n s e q u e n t l y ,  e x p r e s s i o n s  (21) can be c o n s i d e r e d  as t he  Hooke ' s  law r e l a t i o n s  f o r  a t r a n s c e n -  
d e n t a l - i s o t r o p i c  body ,  i n  which the  p lasma o f  i s o t r o p y  c o i n c i d e s  w i t h  t he  p l a n e  xtOx2. 

S u b s t i t u t i o n  o f  e x p r e s s i o n s  (21) i n  Eq. (19) l e a d s  to a s y s t e m  o f  e q u a t i o n s  i n  a m p l i t u d e  
displacements 

Lijuj ---- 0. (22) 

The differential operators Lij have the form 

L , I = 6 , j  M , n ~ - - p s '  + ( i - - 6 , j )  F U ~ ,  ( E i , ~ ; ~ ) ;  

M ~ , ~ = { a u  --q(61~ -- 6~) --  p63~ (i = n); G ~ - - q  (6x, --  6.,~) - -pS i ,  (i@- n)}, 
F ~  = a~  + Gij. 

I n  o r d e r  to  o b t a i n  Eq. (22) ,  as  i n  [ 1 ] ,  t he  g e n e r a l  s o l u t i o n s  i n  i n v a r i a n t  form can be 
c o n s t r u c t e d  i n  a s i m i l a r  way.  

For a cylindrical body with a curvilinear contour of the transverse section, the general 
solutions of the stability equations can be written in the form 

Un = " ~  1~ an-~-xa %, Ux = -- an a~-xa X, 
- -  a l l  , a a 2 ps2~ 02 02 (23) 

u ~ - - ~ ( A ~ , o  d ~.)X, A=ox--)+~'o~ 

where n and z are the normal and tangent to the contour of the transverse section. 

The functions ~ and X are determined from the equations 

" [( " )( " ) -- -- -- -- -- % =0: (24) A "-t- Ox 2 " ~ = O, a l i a  + G ~ 2 ps ~ GA -~ a33 ~-x2 p$2 __ F~aFal A o~ 
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~ o tx=O,f 
O,6 ~ o,+ 

9=~ q7 
0,4 o,+ 

1~=0 ,~5 ,  ~ 0,2 " 
o qr 0,2 ~ 

Fig. I 

In quasista~ic formulation (s = 0), the functions ~ and X are solutions of the equations 

< 04)  [ 02 ,  ~2~2 a~l A + 'V = 0, A~. + (~2 + ~ )  ~ ~  ~- ~=+~ ~ !  ~ _ 0, 

2 
where the constants ~i have the form 

2 a . a  + ~1~+ ~-TiV~ ) - -  ~ J  " 

(25) 

If in relations (23)-(25) we suppose that for aij in expression (21) a = 0 and c =b -I [e= 0 
and ~(oo) = 0], then we arrive at the results of [i]. 

The solutions derived by analogy with the results obtained for elastic, viscoelactic, 
elastoplastic [i], and elastoviscoplastic bodies [7] for small uniform subcritical deforma- 
tions, allow us to obtain the characteristic determinants for a number of problems. 

Thus, in the case of a plate, infinitely long in the direction Oxx, with thickness 2h 
and length I when compressed along the axis Ox3 by a "dead" load of intensity p, we obtain 
the characteristic determinant in the usual way in the form 

( a2 2 aa2G) :~ ~ _ o~3 , .  - %~ - ~ h ~  ~ . ~  _ ~.~ 
a3. a-~-2d (~t sh  sh  r162 ch  a~ t )  - -  

o 9 
a~3 - -  a ' ~ 2  - -  a3~G 

a22G ~152 (~2 sh a~l ch ~ 2  --  ~1 sh a ~  ch a ~ )  + 

__ ~h (26) 
G32 ~ " 

The solution obtained can be used [8] in order to determine the s~able dimensions of ex- 
tended (strip) barriers in a compressed elastoplastic ground massif. In this case, p = 
yHL(2h) -t, where y is the weight by volume of the rock; H is the distance from the ground 
surface to the roof of the chamber, and L is the base of the column of rock pressing on the 
barrier. 

In the case of surface instability with the condition that the loss of stability occurs 
within the bounds of plane deformation in the plane x~Ox~, the characteristic equation has the 
form 

[ ( + ) 
a32 

~3.~ a22%.~ - -  a~2 - -  a32Gj = 0 .  ( 2 7 )  
~32 G22G 

2 in (26) and (27) have the form Constants ~i 

~,2 a~3--(a:~2+G)2+(G--P) • I[a~3--(a:~+G)2+(G--p)G] 2 a~3a__~G(G--p)(l/2_j 
(l_ 2a22G 

Equation (27) has been solved numerically for different values of ko, ~, v, where ko = kE -~ is 
the yield point; ~is the rateof"dilatancy" (~ = tanp, where p is the angle of internal friction, 
in particular for sandp = 26-40*, hence~ = 0.49-0.82); ~ isPoisson's coefficient; E is the modulus 
elasticity. In order to determine the function defining the volume compression @(oo), 
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the relation between o and e was chosen to be linear, o = Omaxe , which, according to [9], 
is characteristic for friable media, in particular for sand. Figure 1 shows the dependence 
of the critical pressure po = pE-* on the yield point ko for values of Poisson's ratio of 
v = O, 0.5 and rate of dilatancy = = 0.i, 0.4, and 0.7, characteristic for friable media 
(sand, gravel, etc). 

A calculation has shown that the effect of v and ~ within the above-stated limits on 
the magnitude of the critical force is significant. However, the arbitrary values of the 
critical loadings obtained in this case are unreal and, consequently, no surface instability 
is observed in practice. 
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VARIATIONAL METHOD FOR SOLVING PROBLEMS OF THE PLASTICITY OF 

COMPRESSIBLE MEDIA 

I. S. Degtyarev 
UDC 539.37 

Variational methods used in the theory of plastic flow are formulated on the assump- 
tion of the incompressibility of the deformable medium. In solving problems of the 
mechanics of soils and friable media and technological problems of the plastic 
shaping of uncompacted materials it is very important to take account of irrever- 
sible volumetric change. Extremum and variational theorems are proved in [I, 2] 
for rigid-plastic and viscoplastic expanding bodies. A variational equation equiva- 
lent to a complete system of differential equations is derived for a compressible 

plastic body. 

We consider a materia I medium with the equations of state 

Sij=2gl(~,H) eij, p=~(~),  ~j=~ij-----ff-e6~j, (1) 

where the Sij and the e~j are, respectively, the components of the stress deviators and the 
strain rates; g:(o, H) and ~(o) are functions of the material; p is the density of the medium; 
H is the intensity of shear strain rates; and o is the mean stress. 
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